As Fast As Possible

The best way to figure out which type of AA (Anti-Aliasing) works the best for you is to simply try every available AA until you find the sweet spot between the image enhancement and tolerable performance sacrifice. We’ll go into details for all popular anti-aliasing types to give you a better idea what each of them does.

If the graphics in your video games are craggy or suffer from the staircase effect where you can actually see the rough edges instead of a round shape, there are ways to improve it.

The prominent craggies appear due to the low resolution, so the most efficient way to get rid of it is by getting a higher resolution monitor. In fact, on a 4K monitor, the image is so crisp and sharp that you most likely won’t even need any sort of AA to improve the picture.

However, if you can’t afford a new monitor or the new gear required to run the higher resolution, you can use one of many anti-aliasing techniques available to improve the image quality. Some are more efficient than the others, but usually also come at a higher performance cost resulting in an FPS (Frames Per Second) rate drop.

Different Anti-Aliasing Types

There are two main groups of anti-aliasing. The first group we’ll get into increases the sample rate by rendering more pixels than the screen actually needs and then down-samples it to your resolution.

The second group of AA types blurs the rough edges on the screen after the rendering process. Since this version of AA is post-processing, there’s only a tiny impact on your performance, but the image quality improvement is also less noticeable and can appear too blurry especially when with fast motion.

So, if you can afford to sacrifice performance for the picture quality, you will likely opt for some sort of sampling anti-aliasing. If every frame per second is precious to you, then you will have to settle for a post-processing AA which may slightly blur the image but at least it will eliminate the unpleasant staircase effect.

best anti aliasing

Super-Sampling Anti-Aliasing

First off, we have the SSAA (Super-Sampling Anti-Aliasing) or FSAA (Full-Scene Anti-Aliasing) which were the first forms of AA to be available and still deliver the arguably best image quality enhancement but with a heavy performance cost.

A more popular AA is the MSAA (Multi-Sample Anti-Aliasing) which only applies the sampling to the edges, where it is most needed, and will thus save you the performance cost while still noticeably improving the image quality.

NVIDIA and AMD have their own propriety versions of MSAA. Both Nvidia’s CSAA (Coverage-Sample AA) and AMD’s EQAA (Enhanced Quality Anti-Aliasing) are derivates of MSAA and function pretty much the same way.

Post-Processing Anti-Aliasing

The most common post-processing AA is FXAA (Fast-Approximate Anti-Aliasing). As previously described, enabling this will blur out the annoying jaggies with the minimal performance cost.

This peculiar anti-aliasing algorithm may repulse many gamers due to the blurry image, but if you have limited system horse-power it is likely your only choice as it’s the best anti-aliasing method for performance.

AMD’s MLAA (Morphological Anti-Aliasing) is similar to the FXAA, you get a blurry picture at a tiny performance cost, but it smoothes out the rough edges.

https://www.youtube.com/watch?v=d2BIMcZNtYk

Combined Anti-Aliasing

which anti aliasing to use

NVIDIA’s TXAA (Temporal Anti-Aliasing) combines MSAA (down-sampling) and post-processing (blurring) with temporal filters for the overall better outcome. However, you will need a graphics card based on NVIDIA’s Kepler GPU, a GTX 600-series or higher, for this technology. Naturally, TXAA also requires more power than the standard FXAA as it handles fast in-game motion much more efficiently.

You can check out how does temporal anti-aliasing work in the embedded player below.

https://www.youtube.com/watch?v=-6YUVwGQvzM

Another in-between solution is SMAA (Sub-Pixel Morphological Anti-Aliasing) which is the middle ground between FXAA and MSAA regarding both image quality and performance cost. Basically, it works like FXAA but also detects the edges to smooth them out specifically.

Then we have CMAA (Conservative Morphological Anti-Aliasing) which is a combination of FXAA again and SMAA. So, you get less blurring than with FXAA, but a softer image than SMAA while the performance cost is in-between the two.

Super Resolution

Alternatively, you may want to try out NVIDIA’s DSR (Dynamic Super Resolution) or AMD’s VSR (Virtual Super Resolution) depending on your graphics card. This technology allows your GPU to render the screen up to 4K resolution (depending on the max resolution of your monitor) and then down-sample it to your monitor’s native resolution.

Additionally, this isn’t only great for gaming as you can increase the resolution of your desktop as well which will give you more screen real estate for your spreadsheets.

https://www.youtube.com/watch?v=rSUSYaa6C9s

Conclusion

There are many more types of AA such as NVIDIA’s SGSSA and OGSSAA which require more complex driver editing and tweaking, but we will get to that in a dedicated article later on.

For games that don’t have any AA or not the ones you need, you can download a software such as SweetFX which can inject certain anti-aliasing methods including SMAA, among others. Or simply use NVIDIA’s or AMD’s super-resolution feature if your GPU supports it.

Hopefully, after reading this, you’ll have a better idea what to do in your anti-aliasing section of the video settings in your games!

Head Editor

Joseph is a tech writer and copy-editor that has written and ghostwritten hundreds of articles for different online magazines and blogs. He now writes and manages DisplayNinja to ensure it stays as the people’s favorite resource.

Posts You Might Also Like